H5W3
当前位置:H5W3 > mysql > 正文

【Mysql8.0】PolarDB Explain Format Tree详解

前言

Mysql从8.0.18引入了Explain Format Tree的功能,PolarDB-2.0也支持了该功能。 本篇,我们来详细介绍下Explain Format Tree功能,以及Parallel Query对该功能的支持和变化。

Mysql Explain Format Tree 执行计划

Explain Format Tree依赖的是mysql新引入的iterator tree格式的执行计划。通过递归遍历iterator tree来完成Format Tree格式的执行计划的展示。
Iterator的组织形式的树形的,通常的Iterator都只有一个children(JOIN iterator有两个,分别是JOIN的外表和内表),所有在递归遍历过程中直接访问的Iterator都是RowIterator的子类。

下面是一个Explain Format Tree的例子和解读:

mysql> explain format=tree select a1, a3, sum(b2) sum from t1 join t2 where t1.a1 = t2.b2 and t2.b1 > 0 group by a1,a3 order by sum limit 10\G
*************************** 1. row ***************************
EXPLAIN: -> Limit: 10 row(s)
-> Sort: <temporary>.sum, limit input to 10 row(s) per chunk
-> Table scan on <temporary>
-> Aggregate using temporary table
-> Nested loop inner join  (cost=9301.16 rows=8737)
-> Filter: (t2.b1 > 0)  (cost=51.95 rows=171)
-> Table scan on t2  (cost=51.95 rows=512)
-> Filter: (t1.a1 = t2.b2)  (cost=3.03 rows=51)
-> Table scan on t1  (cost=3.03 rows=512)

上面是一个典型的Mysql查询,包含了join, group by, order by 和 limit
通过上面的计划我们可以知道整个SQL的执行过程是

  1. 对t2表进行scan和过滤,t2是驱动表
  2. 将结果和t1表进行nest loop join,join条件是 t1.a1 = t2.b2
  3. 对join的结果进行聚集计算,计算的通过临时表进行的,聚集结果也保存在临时表中
  4. 对临时表的内容进行排序
  5. 对排序结果limit 10输出

这个例子的Iterator Tree的样子是:

LimitOffsetIterator
|-> SortingIterator
|-> TableScanIterator
|-> TemptableAggregateIterator
|-> NestLoopIterator
|-> FilterIterator
|   |-> TableScanIterator
|-> FilterIterator
|-> TableScanIterator

可以看出结构和format tree的输出是完全一样的。

Iterator基本结构和组织方式

RowIterator是所有Iterator的基类,下面列出了explain相关的主要成员和方法:

class RowIterator {
public:
struct Child {
RowIterator *iterator;
std::string description;
};
virtual std::vector<Child> children() const { return std::vector<Child>(); }   // 返回iterator的children list,在递归中使用
virtual std::vector<std::string> DebugString() = 0;   // 输出Iterator的计划信息,不同的Iterator会有各自的实现
JOIN *join_for_explain() const { return m_join_for_explain; }   // 如果是join的root_iterator会返回join的指针,用来遍历join上的子查询并输出子查询的查询计划。
private:
double m_estimated_cost = -1.0;     // Iterator执行完成预期的代价
double m_expected_rows = -1.0;      // Iterator输出的行数
};

RowIterator::children

返回当前iterator的children list,包装结构为Child,部分Iterator在实现该方法时除了返回childrend iterator的指针以外,还返回了description。
例如:

mysql> explain format=tree select * from t1 join t2 on a1=b1 \G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (t2.b1 = t1.a1)  (cost=26269.36 rows=26214)
-> Table scan on t2  (cost=0.01 rows=512)
-> Hash
-> Table scan on t1  (cost=54.20 rows=512)

Iterator tree的结构如下:

HashJoinIterator
--> TableScanIterator    // t2, probe side
--> TableScanIterator    // t1, build side

HashJoinIterator的children方法返回的内容如下:

{<TableScanIterator(t2), null>,
<TableScanIterator(t1), "Hash">}

其中Hash是description, 这里表示对t1表build hash然后再去join t2表。

RowIterator::DebugString()

产生Iterator的格式化字符串, 每个Iterator都有自己的实现,主要是描述Iterator的行为,包括Table Scan的方式, 过滤的Condition,Join method等等, 通常都是一行。

Explain Format Tree 介绍

执行过程

Explain

- handle_query()
- SELECT_LEX_UNIT::optimize()
- SELECT_LEX::optimize()
- JOIN::optimize()
- JOIN::create_iterators()          // 创建join的iterators
- JOIN::create_table_iterators()
- JOIN::create_root_iterator_for_join()
- JOIN::attach_iterators_for_having_and_limit()
- SELECT_LEX_UNIT::create_iterators()   // 创建union的iterators
- explain_query()
- ExplainIterator()     // 如果explain_format = tree,调用此接口输出执行计划
- PrintQueryPlan()    // 将iterator的信息格式化为tree格式的执行计划字符串,该接口会对iteratortree进行递归
- FullDebugString() // 生成iterator的计划信息

PrintQueryPlan()

std::string PrintQueryPlan(int level, RowIterator *iterator) {
string ret;
if (iterator == nullptr) {
ret.assign(level * 4, ' ');
return ret + "<not executable by iterator executor>\n";
}
int top_level = level;   // 当前缩进level, 每个level缩进4个空格
// 输出自身的计划信息
for (const string &str : FullDebugString(current_thd, *iterator)) {
ret.append(level * 4, ' ');
ret += "-> ";
ret += str;
ret += "\n";
++level;
}
// 遍历所有的children iterator, 递归输出计划信息
for (const RowIterator::Child &child : iterator->children()) {
if (!child.description.empty()) {
ret.append(level * 4, ' ');
ret.append("-> ");
ret.append(child.description);
ret.append("\n");
ret += PrintQueryPlan(level + 1, child.iterator);
} else {
ret += PrintQueryPlan(level, child.iterator);
}
}
//
if (iterator->join_for_explain() != nullptr) {
for (const auto &child :
GetIteratorsFromSelectList(iterator->join_for_explain())) {
ret.append(top_level * 4, ' ');
ret.append("-> ");
ret.append(child.description);
ret.append("\n");
ret += PrintQueryPlan(top_level + 1, child.iterator);
}
}
return ret;
}

FullDebugString()

通过本方法输出一个iterator的完整的计划信息,包括iterator本身的信息,cost信息和执行信息

vector<string> FullDebugString(const THD *thd, const RowIterator &iterator) {
vector<string> ret = iterator.DebugString();           // 生成iterator的计划信息
if (iterator.expected_rows() >= 0.0) {                 // 生成cost info
// NOTE: We cannot use %f, since MSVC and GCC round 0.5 in different
// directions, so tests would not be reproducible between platforms.
// Format/round using my_gcvt() and llrint() instead.
char cost_as_string[FLOATING_POINT_BUFFER];
my_fcvt(iterator.estimated_cost(), 2, cost_as_string, /*error=*/nullptr);
char str[512];
snprintf(str, sizeof(str), "  (cost=%s rows=%lld)", cost_as_string,
llrint(iterator.expected_rows()));
ret.back() += str;
}
if (thd->lex->is_explain_analyze) {                    // 生成执行信息
if (iterator.expected_rows() < 0.0) {
// We always want a double space between the iterator name and the costs.
ret.back().push_back(' ');
}
ret.back().push_back(' ');
ret.back() += iterator.TimingString();
}
return ret;
}

Parallel Query 中 Explain Format Tree 的变化

PolarDB的Parallel Query功能引入了新的exchange算子, 同时多阶段并行计划在生成计划的过程中是基于Cost选择的最优计划,我们对Parallel Query计划Format Tree的输出信息进行了完善和补充, 下面是Parallel Query计划的Explain Format Tree的一个简单例子。

mysql> explain format=tree select a1, a3, sum(b2) sum from t1 join t2 where t1.a1 = t2.b2 and t2.b1 > 0 group by a1,a3 order by sum limit 10\G
*************************** 1. row ***************************
EXPLAIN: -> Limit: 10 row(s)  (cost=2825.63 rows=10)
-> Sort: <temporary>.sum, limit input to 10 row(s) per chunk  (cost=2825.63 rows=51)
-> Stream results
-> Gather (slice: 1; workers: 4)  (cost=2815.55 rows=51)
-> Table scan on <temporary>
-> Aggregate using temporary table  (cost=2802.35 rows=13)
-> Nested loop inner join  (cost=2363.21 rows=2184)
-> Repartition (hash keys: t2.b2; slice: 2; workers: 2)  (cost=50.91 rows=43)
-> Filter: (t2.b1 > 0)  (cost=25.97 rows=85)
-> Parallel table scan on t2, with parallel partitions: 2  (cost=25.97 rows=256)
-> Filter: (t1.a1 = t2.b2)  (cost=3.12 rows=51)
-> Table scan on t1  (cost=3.12 rows=512)

从上面的计划可以看出相对于Mysql原版计划,parallel query的计划作出了下面的变化

  1. 对 group by/ distinct / order by / window / limit iterator增加了代价显示的支持
  2. 新增了exchange算子和exchange算子详细信息的显示,包括算子类型(gather/repartition/nroadcast), slice id, parallel worker number。 对于repartition的exchange算子,同时还显示了repartition column。

附录

Iterator List

RowIterator <|--- TimingIterator
|- UnqualifiedCountIterator
|- FakeSingleRowIterator
|- ZeroRowsIterator
|- ZeroRowsAggregatedIterator
|- FollowTailIterator
|- FilterIterator
|- LimitOffsetIterator
|- AggregateIterator
|- PrecomputedAggregateIterator
|- NestedLoopIterator
|- CacheInvalidatorIterator
|- WeedoutIterator
|- RemoveDuplicatesIterator
|- NestedLoopSemiJoinWithDuplicateRemovalIterator
|- WindowingIterator
|- BufferingWindowingIterator
|- MaterializeInformationSchemaTableIterator
|- AppendIterator
|- HashJoinIterator
|- SortingIterator
|- TableRowIterator <|--- TableScanIterator
|- IndexScanIterator
|- IndexRangeScanIterator
|- SortBufferIterator
|- SortBufferIndirectIterator
|- SortFileIterator
|- SortFileIndirectIterator
|- MaterializeIterator
|- StreamingIterator
|- TemptableAggregateIterator
|- MaterializedTableFunctionIterator
|- RefIterator
|- RefOrNullIterator
|- EQRefIterator
|- ConstIterator
|- FullTextSearchIterator
|- DynamicRangeIterator
|- PushedJoinRefIterator
|- AlternativeIterator

注:文中引用代码是基于mysql-8.0.20版本的。

本文地址:H5W3 » 【Mysql8.0】PolarDB Explain Format Tree详解