4) The linear transformation L defined by L(p(x)) = p'(x)+p(0) maps Pinto P. a) Find the...
4) The linear transformation L defined by L(p(x)) = p(x)+p(0) maps Pinto P. a) Find the matrix representation of L with respect to the ordered bases l_r"} and {1, 1-x). b) For the vector, p(x) = 2x' +1-2 () find the coordinates of L(p(x)) with respect to the ordered basis{1, 1-x), using the matrix you found in a). Remember to use the coordinate vector of p(x) with respect to the basis {1x2). (ii) Show that they are the weights that...
4) The linear transformation L defined by L(p(x)) = p'(x)+ p(0) maps P, into P. a) Find the matrix representation of L with respect to the ordered bases {1xx.x"} and {1, 1-x} b) For the vector, p(x) = 2x2 + x-2 () find the coordinates of L(p(x)) with respect to the ordered basis {1, 1-x}., using the matrix you found in a). Remember to use the coordinate vector of p(x) with respect to the basis {1xx"}. (ii) Show that they...
The linear tranformation L defined by L(p(x)) = -9p' - 6p" maps Pinto P. (a) Find the matrix representation of L with respect to the ordered bases E = {r", 1, 1,1} and F = {2? + +1, 2+1, 1} 0 0 0 S= 0 0 0 (b) Use Part (a) to find the coordinate vectors of L(p()) and L(g(x)) where p(r) = 2.r 13r and g(x) = r? - 5. [L(p()) = 0 L(g(x)) p = Submit answer
3. This example hopes to illustrate why the vector spaces the linear transformation are defined on are critical to the question of invertibility. Let L : → p, be defined by L(p)(t+1)p(t)-plt). (a) Given a basis of your choice, find a matrix representation of I with respect to your chosen basis (b) Show L: P+P is not invertible (e) Let V-span+21-4,+2t-8). It can be shown that L VV. Given an ordered basis for V of your choice, find a matrix...
Linear algebra: tell me what happen. How do we get that matrix A by using the D derivative D(x^2)=2x how we get D(x^2)=2x+0*1???? follow the comment EXAMPLE 5 The linear transformation D defined by D(p-p' maps P3 into P2. Given the ordered bases [r.x, and [x, for Ps and P2, respectively, we wish to determine a matrix representation for D. To do this, we apply D to each of the basis elements of P3 Convert t Microso Documen D(x) =...
How was the linear transformation of b1 and b2 were applied (L(b1) , L(b2))? NOTE: b1=(1,1)^T , b2=(-1,1)^T Linear Transformations EXAMPLE 4 Let L be a linear transformation mapping R? into itself and defined by where (bi, b2] is the ordered basis defined in Example 3. Find the matrix A represent- ing L with respect to [bi, b2l Solution Thus, A0 2 onofosmation D defined by D(n n' maps P into P, Given the ordered Linear Transformations EXAMPLE 4 Let...
Font Styles Paragraph Definition 1: Given La linear transformation from a vector space V into itself, we say that is diagonalizable iff there exists a basis S relevant to which can be represented by a diagonal matrix D. Definition 2: If the matrix A represents the linear transformation L with respect to the basis S, then the eigenvalues of L are the eigenvalues of the matrix A. I Definition 3: If the matrix A represents the linear transformation L with...
With explanation! 3. Let B2 be the linear operator B2f (x):- f(0)2 2 (1f (1)2, which maps functions f defined at 0, 1 to the quadratic polynomials Pa. This is the Bernstein operator of degree 2, Let T = B21Py be the restriction of B2 to the quadratics. (a) Find the matrix representation of T with respect to the basis B = [1,2,2 (b) Find the matrix representation of T with respect to the basis C = (1-x)2, 22(1-2),X2]. (c)...
Let T : P2 --> P4 be the transformation that maps a polynomial p(t) into the polynomial p(t) + t2p(t). (a) Find the image of p(t) = 2 - t + t2 (b) Show that T is a linear transformation. (c) Find the matrix for T relative to the bases {1, t, t2} and {1, t, t2, t3, t4}
Find the matrix [T], p of the linear transformation T: V - W with respect to the bases B and C of V and W, respectively. T:P, → P, defined by T(a + bx) = b - ax, B = {1 + x, 1 – x}, C = {1, x}, v = p(x) = 4 + 2x [T] C+B = Verify the theorem below for the vector v by computing T(v) directly and using the theorem. Let V and W...